Network Science and Graph Learning

Catalog of Télécom SudParis courses

Code

IGFE CSC 7282

Domain

Informatique

Program

Master

Language

Anglais/English

ECTS Credits

4

Class hours

30

Workload

45

Program Manager(s)

Department

  • Réseaux et Services de Télécom

Educational team

Organisation

Cours/TD/TP/projet/examen : Class=15h/Labs=15h

Learning objectives

1. Introduction and overview
2. Graph Theory and network basics
3. centrality measures
4. Eigen centrality, PageRank
5. Recommendation engine
6. random graphs (simple)
7. configuration model
8. Advanced random graph model
9. Network resiliency
10. Spreading processes
11. Social Network Analysis
12. Fake news spreading process
13. Community detection on networks
14. data wrangling + data sampling
15. ML and Graph learning
16. Graph Convolutional Network and ML classification problems

Prerequisites

Algorithmic, Basic ML, Statistics, Python

Keywords

Graph,Complex Networks, ML

Evaluation

final grade: final projet

References

[1] D. Easley and J. Kleinberg, Reasoning about a Highly Connected World. Cambridge University Press, 2010.
[2] M. E. J. Newman, Networks : an introduction. Oxford University Press, 2010.
[3] J. Leskovec, A. Rajaraman & J. D. Ullman. Mining of massive datasets, Cambridge University Press, 2020.
[4] William L. Hamilton, Graph Representation Learning, Cambridge University Press, 2020.