Network Science and Graph Learning

Catalogue des cours de Télécom SudParis

Code

IGFE CSC 7282

Domaine

Informatique

Programme

Master

Langue

Anglais/English

Crédits ECTS

4

Heures programmées

30

Charge de travail

45

Coordonnateur(s)

Département

  • Réseaux et Services de Télécom

Equipe pédagogique

Organisation

Cours/TD/TP/projet/examen : Class=15h/Labs=15h

Acquis d'apprentissage

1. Introduction and overview
2. Graph Theory and network basics
3. centrality measures
4. Eigen centrality, PageRank
5. Recommendation engine
6. random graphs (simple)
7. configuration model
8. Advanced random graph model
9. Network resiliency
10. Spreading processes
11. Social Network Analysis
12. Fake news spreading process
13. Community detection on networks
14. data wrangling + data sampling
15. ML and Graph learning
16. Graph Convolutional Network and ML classification problems

Prérequis

Algorithmic, Basic ML, Statistics, Python

Mots-clés

Graph,Complex Networks, ML

Evaluation

final grade: final projet

Bibliographie

[1] D. Easley and J. Kleinberg, Reasoning about a Highly Connected World. Cambridge University Press, 2010.
[2] M. E. J. Newman, Networks : an introduction. Oxford University Press, 2010.
[3] J. Leskovec, A. Rajaraman & J. D. Ullman. Mining of massive datasets, Cambridge University Press, 2020.
[4] William L. Hamilton, Graph Representation Learning, Cambridge University Press, 2020.