Machine Learning for Networks

Catalogue des cours de Télécom SudParis

Code

IGFE CSC 7224

Semestre

Fall

Domaine

Informatique

Programme

Master

Langue

Anglais/English

Crédits ECTS

4

Heures programmées

40

Charge de travail

40

Coordonnateur(s)

Département

  • Réseaux et Services de Télécom

Equipe pédagogique

Organisation

Cours/TD/TP/projet/examen :

Acquis d'apprentissage

Understanding the main machine learning methods and algorithms
- Being able to apply them to computer networks and applications to solve practical use-cases
- Being able to define and follow a correct protocol (data pre-processing, training, test, validation) and to adapt it to the different use-cases
- Being able to use the main Python libraries for Machine Learning

Prérequis

Basic Linear Algebra

Contenu

- Introduction (supervised / unsupervised Machine Learning, protocol, data preparation in python), Data exploration
- Linear Regression, Polynomial Regression, Evaluation of regression models, Regularization
- Classification
- Neural Networks (application to network intrusion classification)
- Random Forests and Ensamble Learning
- Unsupervised Learning and Anomaly detection (application to intrusion detection)
- Machine Learning for High-Speed Networking
- Predictive Maintenance
- Dimensionality Reduction
- Introduction to Reinforcement Learning
- Explainable Machine Learning
- Project presentation
- Theoretical exam

Evaluation

50% Theoretic exam
40% data science project
10% presence and participation