Code
IGSF SIC 4251
Niveau
M1
Graduate
Graduate
Semestre
Fall
Domaine
Signal et Communications
Programme
Programme Ingénieur
Langue
Anglais/English
Crédits ECTS
2,5
Coordonnateur(s)
Département
- Communications, Images et Traitement de l'information
 
Organisation
Cours/TD/TP/projet/examen :Acquis d'apprentissage
•	To master the basics of Information Theory, of data compression algorithms and of error correction coding
•	To be able to implement some classical lossless compression algorithms (Huffmann, Lempel-Ziv)
•	To be able to determine the capacity of some simple noisy communication channels
•	To be able to design the minimum distance decoding table of a linear code
Prérequis
Basic knowledge in probability, in linear algebra and in analysis.
Contenu
•	Introduction : main topics, some application domains
•	Source of information (staionary random process, examples)
•	Entropy/entropy rate of a source
•	Asymptotic Equipartition Property, typical sequences, First Shannon Theorem
•	Introduction to compression : lossless and lossy
•	Lossless compression
o	Uniquely decodable code, prefix code, Kraft inequality
o	Huffmann Algorithm
o	Universal Coding
o	Lempel-Ziv algorithm
•	Noisy communication channel
•	Conditional entropy, mutual information
•	Conditional Asymptotic Equipartition Property, channel capacity, Second  Shannon Theorem
•	Fano inequality, reciprocal of the second Shannon theorem
•	Linear error correcting codes
Evaluation
Exam (3h)